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Abstract

Linear superposition method is used to determine an analytical solution of the thermal constriction resistance

adapted to random contacts. The contact area is constituted of numerous disks which have different radii and are

randomly distributed over a square or circular area. The developed solution is easy to use and allows to consider

numerous contacts at a reasonable computing time. The disks can be distributed in entire contact surface or located in a

specific region. The results are in an excellent agreement with available data in the literature for identical and regular

contacts. The model is used to study the thermal constriction resistance evolution as a function of contact disorders,

number and sizes of disks and relative contact size area. The results are compared to the model of regular con-

tacts. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermal constriction resistance has been widely

studied over these last decades. Numerous models [1–4]

have been developed to calculate its value as a function

of geometrical mechanical and thermal characteristics of

materials. These models are generally based on idealized

contacts (identical asperities, regularly distributed over

the contact plane). Actually, the size of real contact

areas is different and the contacts are randomly distrib-

uted. An experimental study [1], using electrical analogy

has been performed to examine the effect of the eccen-

tricity of unique contact on the evolution of the con-

striction resistance. An analytical related solution [5]

has been developed. A good agreement was obtained

between these results and experimental data. It shows

that the thermal constriction resistance increases with

the increasing of the eccentricity and this effect is more

important when the relative contact size e value is high.

This analytical solution has been generalized to multiple

contacts with different sizes, randomly distributed over

the surface of a laterally insulated semi-infinite square

prism. In this model each contact is submitted to an

uniform heat flux of which the value is determined by

the writing of the equality of the average temperatures

of all contacts. The analytical solution of this problem

[6] has been developed using the finite cosine Fourier

transform and its inverse. The solution includes a double

series which slowly converges and needs an extensive

computing time. Therefore it was difficult to consider an

important number of contacts. The results show that the

thermal constriction resistance for random contacts is

systematically greater than that for identical and regular

contacts. A recent study [7] confirms this trend for

identical disks randomly distributed over a square con-

tact region.

An analytical solution that accounts for the contact

disorder is developed in this paper. The contacts are

modeled by multiple disks with different radii. The

solution is established using the linear superposition
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method. This solution is easy to use and allows to treat

numerous contacts (a few hundreds) at a reasonable

computational time compared to that of Ref. [6]. The

model can be adapted to Hertzian contacts (Fig. 1a) or

large contact surface (Fig. 1b). The results for random

and regular contacts are compared considering the same

number of contacts and the same real contact area. The

thermal constriction resistance evolution is studied as a

function of the relative contact size, the contact disorder,

the number of contacts and the radii dispersion (ratio of

maximum to minimum spots radii).

2. Analytical model

In order to establish the model, we consider a semi-

infinite medium (Fig. 2) with a thermal conductivity k

and a zero reference temperature. The surface (z ¼ 0) is

submitted to N heat sources (j) of circular shape (radius

aj) generating an uniform flux qj in order to simulate the

contact with an other solid. The heat sources are ran-

domly distributed over a square (Fig. 2a) or circular

(Fig. 2b) region. The rest of this surface is insulated. The

heat transfer due to all sources is three-dimensional.

Since the heat conduction equation is linear, we first

determine the response for a unique source (two-

dimensional problem, T ðr; zÞ). We then use the super-

position method to account for other contacts.

The heat transfer governing equations due to a

unique heat source (j) are the following:
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The solution of this problem is classic and is obtained

by applying the infinite Hankel transform and its in-

verse. It allows to write the surface temperature as

Tjðr; 0Þ ¼
qjaj
k

Z 1

0

1

b
J1ðbajÞJ0ðbrÞdb ð5Þ

Nomenclature

Aa apparent contact area

Ar real contact area

a radius of disk contact

b radius of circular contact region

bij distance between centers of contacts i and j

E relative difference between random and

regular contacts (Eq. 19)

e distance between centers of cylinder and

contact zone

k thermal conductivity

L length of square contact region

N number of contacts

q heat flux

Rcs thermal constriction resistance

RR ratio of maximum to minimum disk radii,

¼ MaxðaÞ=MinðaÞ
r; h; z space polar coordinates

T temperature

x; y; z space cartesian coordinates

e relative contact size, ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ar=Aa

p

Fig. 1. Configuration of Hertzian and large contacts.

Fig. 2. Geometry of studied model.
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At the radius r > aj, the integral (5) can be written as [8,

p. 715]:

Tjðr; 0Þ ¼
qjaj
2k
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r

� 	2� �
ð6Þ

where F a; b; c; Zð Þ is an hypergeometric function defined

by

F a; b; c; Zð Þ ¼ CðcÞ
CðaÞCðbÞ

X1
n¼0

Cða þ nÞCðb þ nÞ
Cðc þ nÞ
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and C is the gamma function. Replacing (7) into (6) and

expanding the series, Tjðr; 0Þ can be expressed as follows:

Tjðr; 0Þ ¼
qjaj
k
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At the distance r ¼ eij (Fig. 3), where

eij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ b2ij � 2qbij cos h

q
ð9Þ

the ratio (aj=eij) can be expressed using Legendre poly-

nomials [8, p. 1048] as follows:

aj
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Replacing (aj=eij) by its expression in Eq. (8) and su-

perposing temperatures due to contacts (j) to that of

the contact (i), the average temperature of contact (i) can

be written as

T
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In Eq. (11) the expanding series is stopped at ðai;or;j=bijÞ5
which is widely sufficient because in practice ai;or;j 
 bij.
The first term of Eq. (11) corresponds to the effect of the

contact (i) only and the second one presents the inter-

action between all the contacts (j) with the contact (i).

The individual thermal constriction resistance, RðiÞ
cs ,

due to the contact (i) is defined by

RðiÞ
cs ¼ DT

ðiÞ
c

qipa2i
¼ T

ðiÞ
c � Tc;i
qipa2i

ð12Þ

where T
ðiÞ
c is the average temperature of contact (i) and

Tc;i the temperature at the center of contact (i) due to a

macro-constriction phenomenon which occurs around

the apparent contact area Aa (Fig. 4). This temperature

can be estimated considering the same contact region

subjected to the average heat flux qav ¼
PN

j¼1ðqjAjÞ=Aa.

In a practical point of view, taking into account of the

contact disorder, the macro-constriction is not veritably

due to an uniform heat flux. We have analyzed this as-

sumption in comparing the results of the present model

to that [6] adapted to a contact of a finite surface. The

difference between these two models is tiny (<10%). The

expression of Tc;i due to a square heat source is given

in Ref. [9]:
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Fig. 3. Principle of superposition method.

Fig. 4. Description of micro and macro-constriction pheno-

mena.
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where xi and yi are the cartesian space coordinates

(Fig. 5) of the center position of contact (i).

In the case of circular apparent contact area which b

radius, the temperature Tc;i can be calculated using Eq.

(5), replacing ai by b and r by ei, where ei is the polar

position of the center of contact (i) from the center of

contact region. We have

Tc;i ¼ T ðr ¼ eiÞ ¼
qavb
k

F
1

2
;

�
� 1

2
; 1;

ei
b

� 	2�
ð14Þ

To calculate the thermal constriction resistance Rcs due

to all contacts, we put ðT ðiÞ
c � Tc;iÞ ¼ DTc ¼ Cste (8i) in

the Eq. (12) and we write

Rcs ¼
XN
i¼1

1

RðiÞ
cs

" #�1

ð15Þ

Eqs. (11), (13) and (14) can be written as follows:

T
ðiÞ
c ¼ Giiqi þ

XN
j¼1

ðj 6¼iÞ

Gijqj ð16Þ

Tc;i ¼ Hiqav ¼ Hi

XN
j¼1

pa2j
Aa

qj ð17Þ

The terms Gii and Gij are given in Eq. (11). The term Hi

is given in Eq. (13) for a square area (where Aa ¼ L2) and

Eq. (14) for a circular area (where Aa ¼ pb2).
By writing the equality ðT ðiÞ

c � Tc;iÞ ¼ DTc, we obtain

a linear matrix system of order N whose unknowns are

(qj=DTc). This system is written in the form

Gii

�
� Hi

pa2i
Aa

�
qi

DTc
þ
XN
j¼1

ðj6¼iÞ

Gij

 
� Hi

pa2j
Aa

!
qj

DTc
¼ 1

ði ¼ 1–NÞ ð18Þ

Solving this system, we determine (qi=DTc) for

(i ¼ 1; . . . ;N ), and using Eqs. (12) and (15) we deduce

the values of RðiÞ
cs and Rcs respectively.

3. Results

The present model is used to calculate the thermal

constriction resistance due to a multiple contacts which

radii are different and positions are randomly distributed

over a square surface (the results of circular region are

the same). The data (xi, yi,ai) characterizing the contacts

are generated by the random data of Matlab software. If

a generated contact overlaps with an existing contact, it

is omitted and replaced by the next one. We continue

this procedure until the desirable number of contacts, N,

is obtained. For each studied case we fix the relative

contact size, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ar=Aa

p
, the number of contacts, N,

and the ratio of the largest disk radius, MaxðaiÞ, to the

smallest one, MinðaiÞ. This ratio is presented by the

parameter RR, where RR ¼ MaxðaiÞ=MinðaiÞ.
In a first step, we checked that the present model

provides the same results as the existing model adapted

to some identical and regular contacts.

In order to compare the random and regular con-

tacts, we consider the number of contact, N, equal to a

square number. The relative difference, E, between the

two models is defined as follow:

E ¼ Rcs � RðuÞ
cs

RðuÞ
cs

� 100% ð19Þ

where RðuÞ
cs is the thermal constriction resistance of

identical and regular contacts.

We have studied 36 cases combining three values of

N (16, 49 and 100), four values of e (0.1, 0.2, 0.3 and 0.4)

and three values of RR (1, 5 and 10). The particular case

RR ¼ 1 corresponds to identical disks configuration but

randomly distributed. This allows to analyze the effect of

contact position only. For each case, we plot the average

value of 50 random sets realized in the same conditions.

The analytical solution is programed under Matlab

software in order to simultaneously draw the disks of

contacts and the individual thermal constriction

resistance, RðiÞ
cs , and calculate Rcs and E. Fig. 6 shows

an example of presentation (N ¼ 49, e ¼ 0:218 and

RR ¼ 5). In this example the relative difference between

random and regular contacts, E, is equal to 29%. In Fig.

6(a) are plotted the results of random contacts and in

Fig. 6(b) those of the equivalent identical and regular

contacts. The results of random contact show an im-

portant dispersion of individual RðiÞ
cs . The RðiÞ

cs decreases

with the increasing of the disk radius, ai, but some

contacts have a larger radius and a higher constriction.

This phenomenon is due to the interaction between

contacts and the edge effect which are more or less im-

portant. The RðiÞ
cs values calculated by the present model

for identical and regular contacts are the same and

correspond exactly to those in the literature.

Fig. 7(a)–(c) shows the results for RR ¼ 1, 5 and 10

respectively. The Rcs evolution is plotted as a function of

Fig. 5. Parametrizing of the macro-constriction region.

4178 N. Laraqi, A. Bairi / International Journal of Heat and Mass Transfer 45 (2002) 4175–4180



e for the three values of N. It is clearly shown that for all

the studied cases the Rcs value of random contacts is

greater than that for regular ones. For each value of the

parameter RR the relative difference, E, increases with

the increasing e value. This evolution is almost linear.

For equal value of e, the relative difference, E, increases
with the increasing of RR value. This means that the

presence of asperities with very different sizes involve

an increasing of thermal contact resistance value (the

number of contact and the relative contact size being

the same). Considering equal values of e and RR, the

number of contact N seems have a low influence on the

thermal constriction resistance value.

The results of the three cases (RR ¼ 1, 5 and 10) are

shown in Fig. 8. The linear regressions corresponding to

Fig. 8. Relative contact size and dispersion of disk radii effects

on Rcs.

Fig. 6. Example of presentation of results under Matlab software.

Fig. 7. Relative difference of constriction between random and

regular contacts: (a) RR ¼ 1, (b) RR ¼ 5, (c) RR ¼ 10.
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each case are slightly parallel. For RR values greater

than 10 we almost obtained the same results as for case

RR ¼ 10.

4. Conclusions

An analytical solution is developed in this paper in

order to calculate the thermal constriction resistance due

to multiple disk contacts with random positions and

sizes. This solution is easy to use and allows to consider

numerous contacts. It provides accurate results with

reasonable computational time. It is shown that, for

equal relative contact size e and number of contacts N,

the thermal constriction resistance due to random con-

tacts is systematically greater than the regular contacts.

The evolution of relative difference E between the two

configurations is almost linear as a function of e. The
value of E increases with the increasing of dispersion of

disk radii (parameter RR) and stabilizes around the case

RR ¼ 10. For all cases the value of E are of the order of

a few tens per cent.
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